

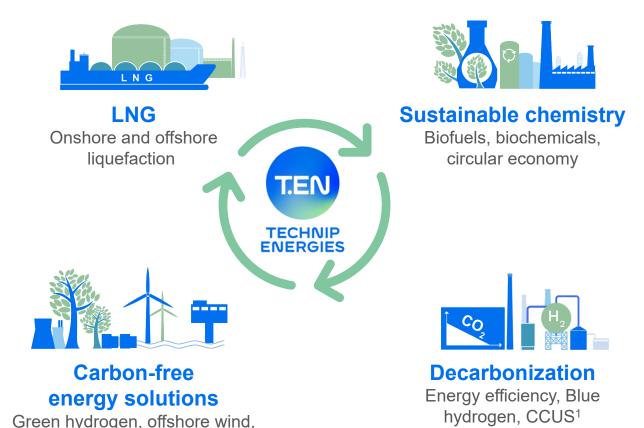
#### 14 Oktober 2021, Botlek Studiegroep

# **Technologies to Decarbonize Hydrogen Production**

The Future of Gas

Wim Hesselink Principal Process Engineer Technip Energies

This document and all information are confidential and may not be used, reproduced or distributed without prior authorization of TECHNIP ENERGIES




### **Requiring a low-carbon and sustainable future**

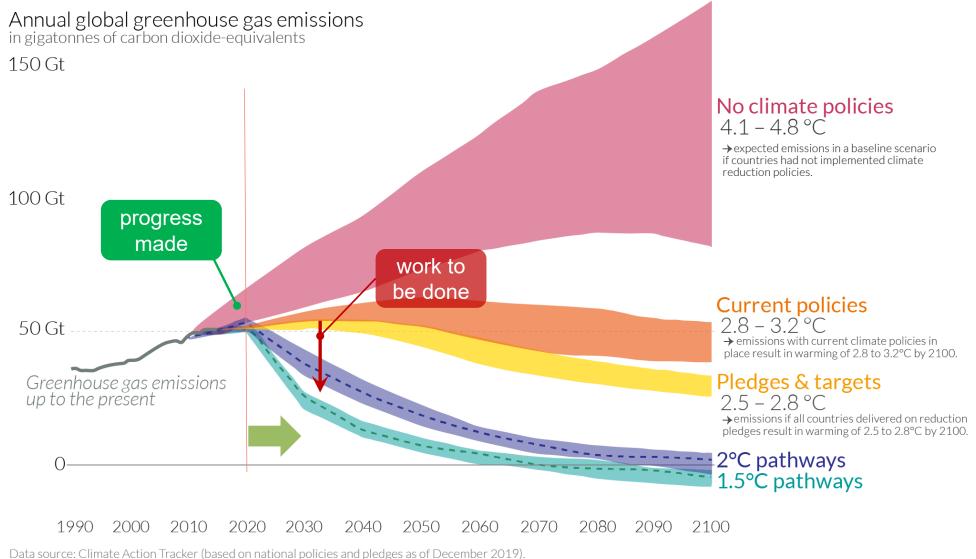


# **Energy Transition is our business**

Applying our core capabilities to today and tomorrow's key energy challenges



**Strategic flexibility** – 'architect mindset' meeting customer needs from energy source to end-use


- Feedstock agnostic outstanding energy molecule transformation capabilities
- Technology-driven integrate complex technologies, including proprietary, to meet project specificities and economic hurdles

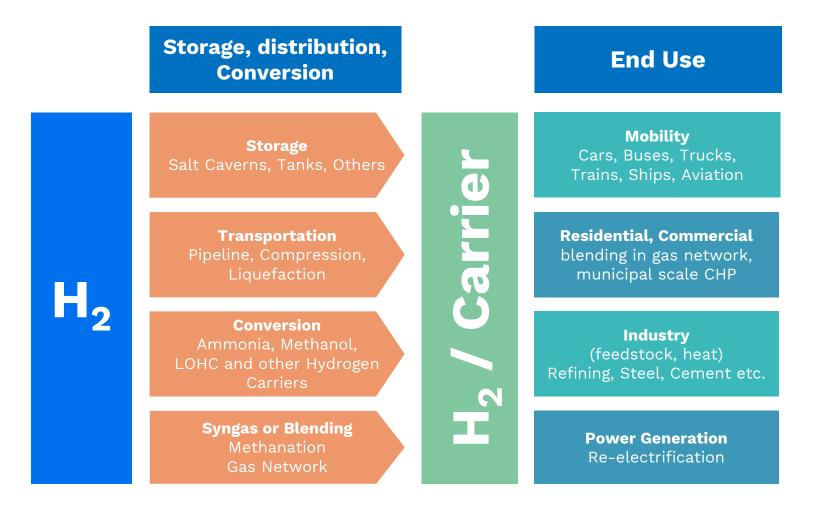
**Exceptional execution** – proven operating model, highly applicable to sustainable energy solutions



nuclear

### The Energy Transition - from 50 Gta CO<sub>2</sub>eq emissions to...




OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie & Max Roser.



### Why hydrogen?

Because it holds promise to decarbonize so many "hard-to-abate" sectors



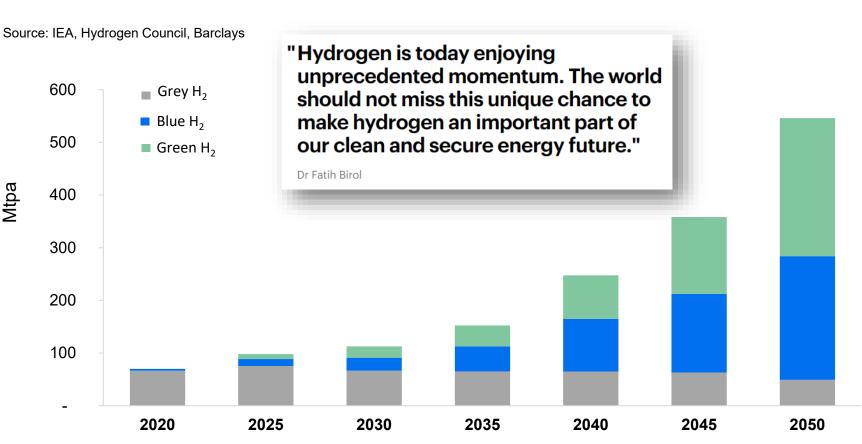


## Why hydrogen?

Because it holds promise to decarbonize so many "hard-to-abate" sectors

- Extreme large market potential for hydrogen in near term as... carbon-free fuel substitute & clean carrier
  - ➔ Some forecasts show 'pure' market volume growing from 75 Mta to >500 Mta by 2050
- > If 10% of European natural gas consumption were replaced by  $H_2...$ 
  - → ~500 BCM/y ÷ 8760 h/y × 10% = 5.7 Mln Nm<sup>3</sup>/h NG
  - → × 3.4 (volumetric LHV ratio) = ~20 Mln Nm<sup>3</sup>/h H<sub>2</sub>
  - → 20,000 kNm<sup>3</sup>/h | or ~100 large scale plants of ~200 kNm<sup>3</sup>/h
- Largest CO<sub>2</sub> emitting slice is power generation clean hydrogen has a large role to play here (e.g. intermittency and topping for renewable electricity)
- Large potential to retrofit and repurpose existing hydrogen manufacturing fleet




### The changing role of hydrogen

Mtpa



Part of an expanded energy portfolio of low/no carbon vectors:

- Fuel substitute e.g. fossil  $\rightarrow$  H<sub>2</sub>
- Energy carrier
- Energy storage and transport media
- Chemical building block
- Synfuel building block



Forecasts vary, and depend heavily on expectations for transport and heating Many anticipate electrolysis to take 10-15 years before significant market share Legacy + decarbonized hydrogen seen to dominate share for foreseeable future

### **Colors of hydrogen**

### **Blue Hydrogen**

produced from non-renewable sources with a **low** or **mitigated** carbon footprint.

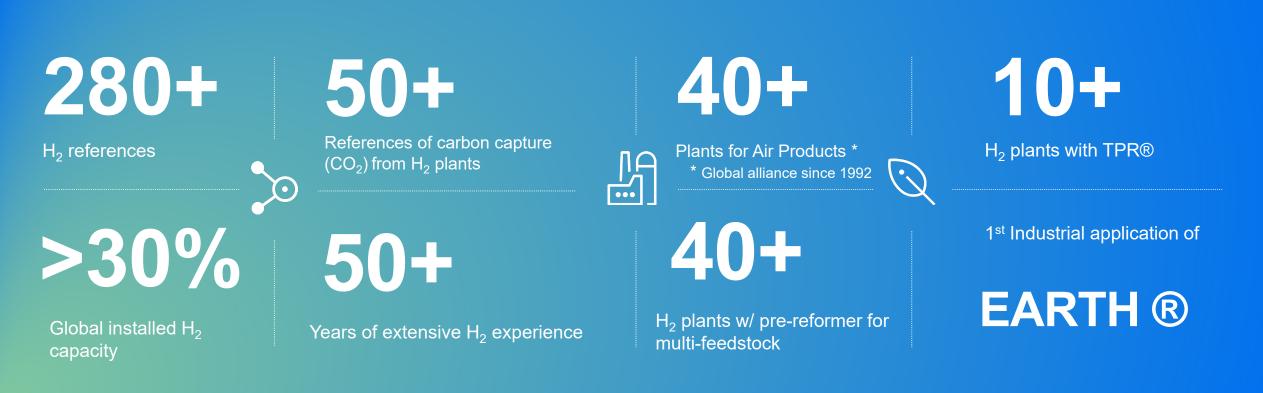
Produced Carbon Dioxide is captured from high pressure process gas or low-pressure flue gas for subsequent use or sequestration ("CCUS") to arrive substantially reduced GHG footprint.

Blue  $H_2$  will play a role in the Energy Transition, as an immediate and affordable step to reduce carbon footprint.



### **Green Hydrogen**

produced from renewable energy sources, such as renewable electricity or carbon-neutral feedstock.


Green  $H_2$  is associated with the "Hydrogen Economy", a future scenario where hydrogen is widely used as a carbon-free energy carrier, and a fundamental alternative to fossil fuels.

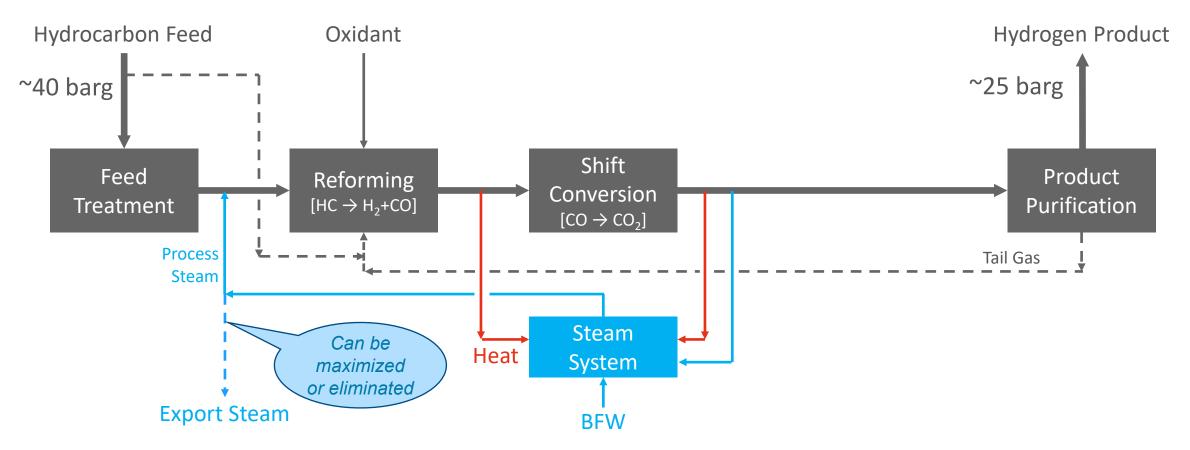




### **Our Hydrogen Heritage**

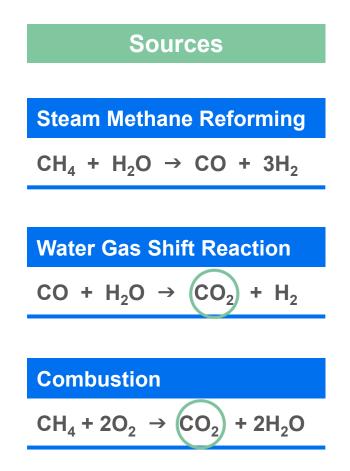
TECHNIP ENERGIES




- Leading-edge reforming technology with high-temperature reaction kinetics expertise
- Numerous in-house technological advances, e.g. in steam reforming and feed flexibility (> 60 plants)
- Presenting many industry's firsts, e.g. PSA, prereformer, high-quality steam, cost effective revamp for capacity increase, etc

# Basic (grey) hydrogen plant

block scheme


**TECHNIP** ENERGIES

T.EN



Most hydrogen plants are **co-generation** plants: energy exported in multiple forms: hydrogen, steam, power...

# **Sources of CO<sub>2</sub> in hydrogen production from hydrocarbons**



1 kg of  $H_2$  production typically emits 8-12 kg  $CO_2$  (grey hydrogen)

- Methane reacting with steam in overall reforming and shift 5.5 kg  $\rm CO_2$  / kg  $\rm H_2$
- Methane reacting with oxidant 1.7 kg  $CO_2$  / kg  $H_2$
- Co-produced export steam 0 4 kg CO<sub>2</sub> / kg H<sub>2</sub> (Typical 0.15-0.20 kg CO<sub>2</sub> / kg steam)

#### **Baseline depends on:**

- feedstock quality (H/C ratio, fossil C content)
- process scheme
- quantity of export steam/power etc.
- quantity/dependency on imported resources, and their carbon footprints

CO<sub>2</sub> present in process gas and flue gas (where carbon emitting fuel is fired)



# **CO<sub>2</sub> avoidance & capture**

#### **CO<sub>2</sub> Avoidance** (proactive abatement)

- Objective reduce baseline CO<sub>2</sub> intensity of the process
- Reduce reformer firing
- Maximize efficiency

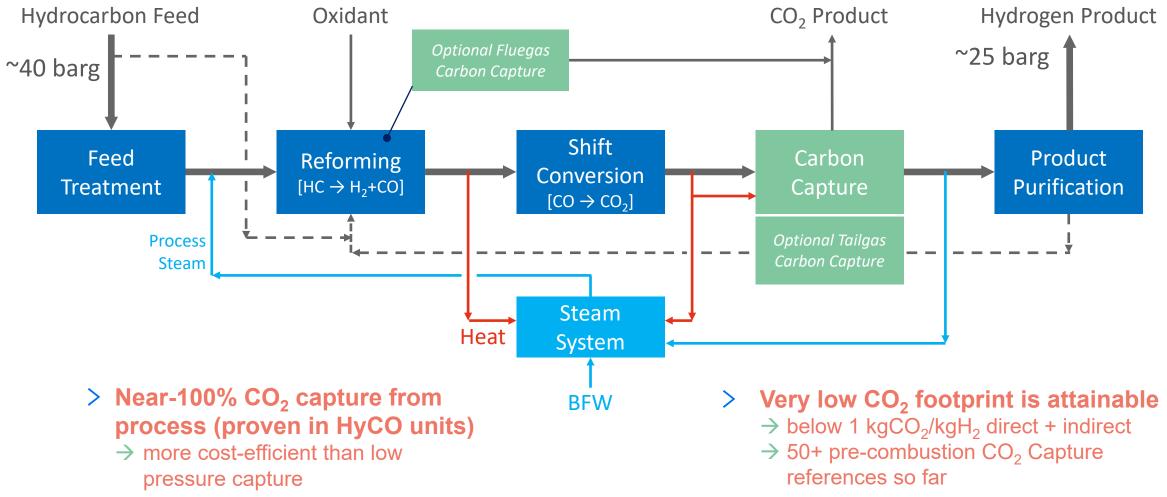
TECHNIP

- Maximize direct yields
- Minimize specific hydrocarbon and energy consumption ("pinch the unit")
- Utilize carbon-neutral feed



#### **CO<sub>2</sub> Capture** (reactive abatement)

- Pre-combustion CO<sub>2</sub> capture from process
  - Many references on syngas, high capital efficiency
  - LP tail gas alternative few references
- Post-combustion CO<sub>2</sub> capture from flue gas
- Applications:
  - Carbon use and/or storage (CCUS)
  - Enhanced Oil Recovery
  - Chemical end-products
  - Agriculture
  - Synfuels




Carbon capture from process gas is proven technology, for both grassroots & retrofits

# Low-carbon (blue) hydrogen unit



#### block scheme





### **Air Products/Repsol refinery**



Hydrogen

CO<sub>2</sub> capture in hydrogen unit (solvent absorption)

Contract: Hydrogen & CO<sub>2</sub> Capture Plant Start-up: 2002 Client: Air Products/ Repsol, Location: Tarragona, Spain

### Key figures السا

**Capacity:** ~60,000 Nm<sup>3</sup>/h Hydrogen Natural Gas & Naphtha feed **CO<sub>2</sub> capture ~ 210 TPD** Food-grade CO<sub>2</sub> product



#### Project was executed under long-term alliance agreement.



# **Air Products for Bharat Petroleum**



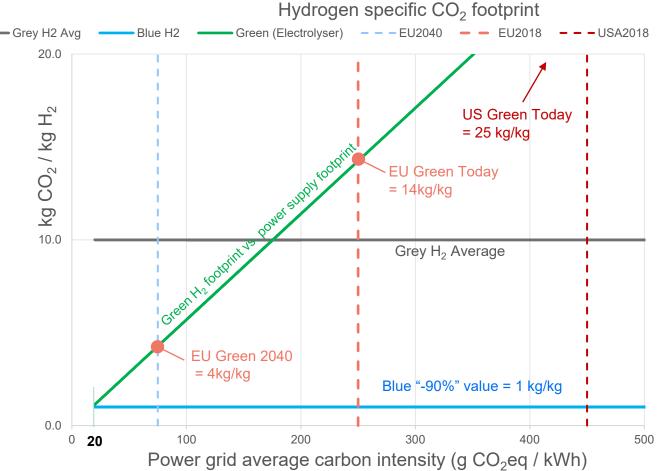
Two SMR trains with cryogenic purification of syngas byproduct

Hydrogen Project

Contract: EPC Services Status: Start-up 2016 Client: Air Products Location: Kochi, India

### راً Key figures

Capacity: 15 t/h hydrogen (in 2 trains) + approx. 14 t/h syngas Naphtha + Natural Gas feed Gas turbine integration in reformer firing 280 TPD CO<sub>2</sub> removal






# What defines "clean hydrogen"?

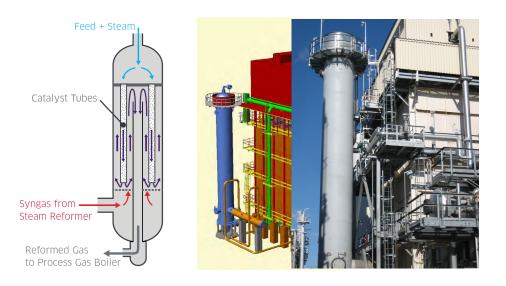
### no universally accepted definition

| Grey = 8                                               | - 12       | kgCO <sub>2</sub> /kgH <sub>2</sub> |  |  |  |
|--------------------------------------------------------|------------|-------------------------------------|--|--|--|
| Blue = 0.5 - 4.0 "<br>[ <0.4 is technically feasible ] |            |                                     |  |  |  |
| Electrolyser                                           | = 0.5 - 45 | kgCO <sub>2</sub> /kgH <sub>2</sub> |  |  |  |
| According to IPCC 2014 A.III.2, lifecycle basis:       |            |                                     |  |  |  |
| Coal                                                   | 820        | g CO₂eq / kWh                       |  |  |  |
| Solar PV                                               | 45         |                                     |  |  |  |
| • Geo                                                  | 38         |                                     |  |  |  |
| Hydro                                                  | 24         |                                     |  |  |  |
| Ocean                                                  | 17         |                                     |  |  |  |
| Nuclear                                                | 12         | u.                                  |  |  |  |
| Wind                                                   | 11         | п                                   |  |  |  |



#### Where CCUS is possible, Blue defines most effective technique (MET) today.




### **Recuperative Reforming**

### **TPR**<sup>®</sup>

### **Technip Parallel Reformer**

TECHNIP

- Lower hydrocarbon & energy consumption
- Deployed up to 160kNm<sup>3</sup>/h capacity and growing
- 13 installations and counting; successful operation for over 20 years



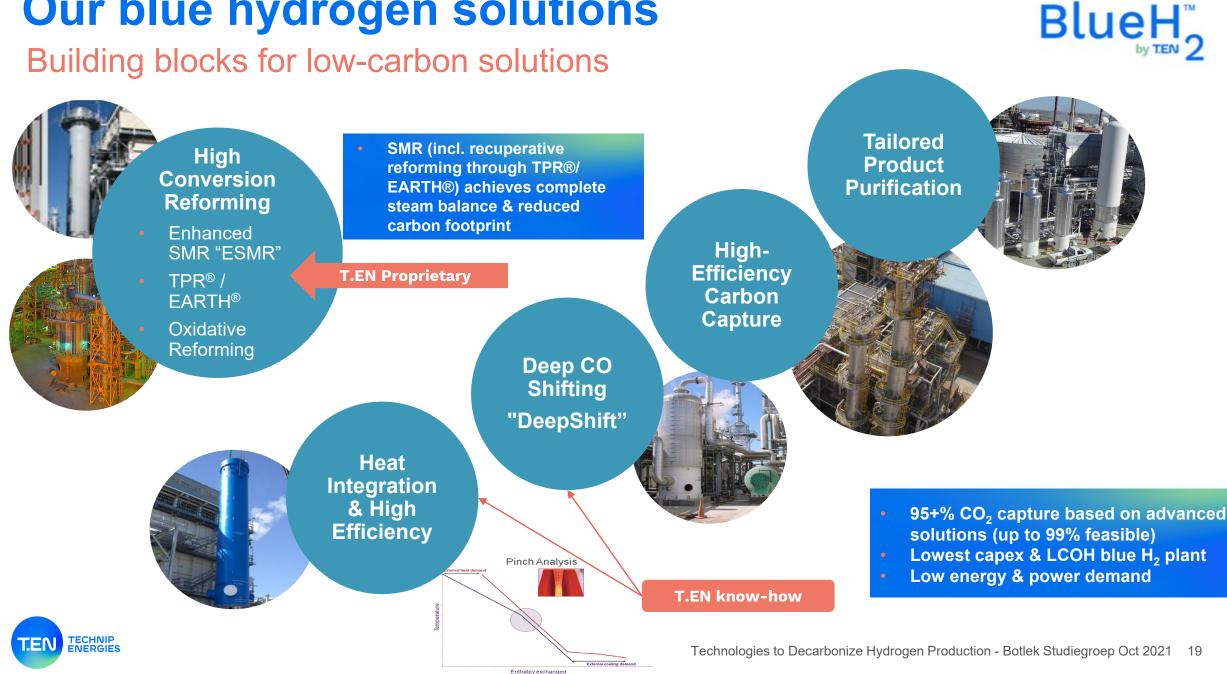
### **EARTH**<sup>®</sup>

### Enhanced Annular Reforming Tube for Hydrogen

- Latest addition to technology portfolio
- Technip Energies IP
- Simple drop-in, minimum CapEx
- Install in existing or new reformer tubes
- Intensify throughput and heat integration
- Proven in operation



> Increase H<sub>2</sub> yield | Reduce CO<sub>2</sub> footprint | Retrofit for up to +30% capacity


### **Technip Large Scale Vortex LSV® Burner**

| Features                                          | Benefits                                                                             |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Unique nozzle to rapidly dilute fuel              | Flameless combustion<br>Ultra-low NOx                                                |  |
| Very flexible fluidic flame stabilizer            | Ultra-lean and cool primary flame                                                    |  |
| Robust design                                     | Reliable                                                                             |  |
| Versatile orientation                             | Applications in wide range of furnaces                                               |  |
| Shielded fuel lances                              | Low maintenance tips                                                                 |  |
| Adjustable and uniform flame heat release profile | Heat release matching process<br>requirements<br>Lower radiant tubeskin temperatures |  |
| Wide range of fuels                               | natural gas, hydrogen<br>PSA purge gas, refinery fuel gas etc.                       |  |



- Reduced NOx and CO<sub>2</sub>
- Improved efficiency or heat distribution





### **Our blue hydrogen solutions**



# **Blue H<sub>2</sub> by Technip Energies**

The leading suite of low-cost, low-carbon hydrogen solutions



Up to 99% reduction in carbon footprint compared to traditional hydrogen production

- from ~10 down to ~0.1 kilogram CO<sub>2</sub> per kilogram H<sub>2</sub>
- carbon-negative KPI in case of renewable feedstock

Maximum hydrogen yield



Minimum energy demand (fuel + power)



Highly-efficient carbon avoidance and capture utilization & storage (CCUS) techniques

Lowest (levelized) cost of hydrogen "LCOH"



Comprised of "flight proven" proprietary technologies and equipment



Full suite of solutions, flexibility to be tailored to every application

BlueH<sup>\*</sup>

 decarbonization of refining, power, chemicals, LNG etc.



### Hydrogen production options – comparative overview

| KPI                               | Grey (Baseline) | Zero Steam<br>(TPR®/EARTH®) | Basic Blue Process | Blue H₂ by T.EN |
|-----------------------------------|-----------------|-----------------------------|--------------------|-----------------|
| Net specific energy demand        | 1               | 1.03                        | 1.06               | 1.1             |
| Steam export?                     | Y               | Ν                           | Ν                  | N               |
| Carbon capture?                   | Ν               | Ν                           | Y                  | Y               |
| Carbon footprint                  | 1               | 0.8                         | 0.2-0.3            | <0.1            |
| Investment burden                 | 1               | 1.1                         | 1.2                | 1.3             |
| Levelized cost of hydrogen (LCOH) | 1               | 1                           | 1.2                | 1.5             |
| Plot area                         | 1               | 1                           | 1.2                | 1.3             |
|                                   |                 |                             |                    |                 |

> T.EN Blue H<sub>2</sub> is based on our best suite of technologies for a low carbon flowsheet

> T.EN Blue H<sub>2</sub> is for now the most (cost) effective solution, particularly as CO<sub>2</sub> pricing increases



# Main Take-aways



### Main takeaways

The H<sub>2</sub> market continues to grow and diversify under a number of evolving drivers. In the initial transition there should be attention towards carbon effective solutions rather than defining challenging objectives. BlueH<sup>™</sup><sub>by TEN</sub>2

Deeply decarbonized, "Blue H<sub>2</sub>" is available and affordable for new plants and retrofits





# Thank you