

Developing the logistics infrastructure to facilitate the Energy Transition

Green ammonia production distribution and Technological Innovations

Botlek Studiegroep

29.04.2021 Hans Vrijenhoef

Ammonia, the new oil

Why Ammonia?

How many energy is stored in this storage tank?

225.000 Gigajoule (GJ) ~ 62.5 million Kwh

How many solar panels are needed to produce this amount of energy in a month?

1.8 million solarpanels

500 MW installed capacity

Which surface is needed for this production?

425 hectare ~ >660 soccer fields

Assumptions: Yield PV 0.3; 275 Wp per solar panel; 4300 panels per hectare;

Why Ammonia? **GREEN AMMONIA (NFUEL®)** NN Fertilizer NH₃ Transport Power 2 ammonia Air separation НН Power 2 ammonia H_2O NO_X & N₂O removal Electrolysis Power 2 ammonia NH₃ Synthesis Chemical precursor NH₃ Storage

VENTURE

Ammonia storage and transport

With Ammonia, There's no "Chicken or Egg" dilemma

Ammonia applications - conventional & innovative

Ammonia innovations

- <u>C-Job Ammonia as ship's fuel</u>
- <u>MAN Energy Solutions' ammonia engine</u>
- <u>Korean register Ammonia Preferred Maritime Fuel</u>
- World's first high-power fuel cell powered by green ammonia
- <u>Ammonia as hydrogen carrier</u>
- <u>Transhydrogen Alliance announces collaboration to bring</u> <u>green ammonia to Europe</u>

Source: C-Job, June 2017

Ammonia, the ideal hydrogen carrier

- Sustainable energy can be stored in the form of ammonia as a hydrogen carrier.
- Ammonia has a relative high energy density in general but as a carbon free component one of the highest.
- Ammonia contains in fact more hydrogen per molecule than the product hydrogen and that has advantages in storage and logistics (108 kg H_2/m^3 NH_3^{warm} or 121 kg H_2/m^3 NH_3^{cold}).
- Ammonia can be easily stored and transported with excellent track record by pipeline, truck, rail or ship.

Storage properties	H ₂ (gas)	H ₂ (gas)	H ₂ (liquid)	NH ₃ (Pressurised)	NH ₃ (Cooled)
Pressure (bar)	300	700	1	8.6	1
Temperature (°C)	20	20	-253	20	-33
Density (kg/m³)	23.7	41.6	70.8	611	681.6
H ₂ (kg/m ³)	23.7	41.6	70.8	107.8	121

NH₃ Event

Organiser of the yearly European (green) NH3 event since 2017

> 160 participants
 June 3 & 4 2021 – Rotterdam
 www.nh3event.com

NH3 event

Power2ammonia, storage & Ammonia2power

- Tendency to further develop power2molecules
 - · Grids to small today

PROTON

NH3

- Extensive costs to enlarge grids
- Hydrogen should be the base to absorb power in "electrolysers"
- NH3 is easier to store in comparison with H2, with large operating experience world-wide
- NH3 as well as downstream chemicals could be made, even from CO2 sources, which are available at specific chemical/physical processes (not for energy production!!!)

www.protonventures.com

About Proton Ventures

EMPOWERING STORAGE SOLUTIONS.

Chemicals, green energy and beyond.

Mission:

We provide innovative engineering and turnkey solutions for world-scale storage terminals, decentralized ammonia production units and other related process applications. We enable our global partners to benefit from our safe, reliable, efficient and environmentally responsible solutions.

Vision:

We strive to be a key player in decentralized chemical energy storage making renewable energy accessible for everybody.

About Proton Ventures

Proton Ventures is based in **Schiedam** (The Netherlands), with close proximity to the industries within the Port area of Rotterdam

We are a team of 25 enthusiastic professionals who can develop, design and implement customized solutions (EPCM) for our customers.

About Proton Ventures

- 35 years experience in ammonia business
- Globally active in ammonia (storage) market, energy (storage) market
- Focusing on modular ammonia production
- Working towards the energy transition from the chemical (ammonia) perspective

Ammonia business segments

NH₃ (energy) storage & handling

- Refrigerated storage tanks (largest of Europe)
- Main & holding compressors
- Marine & railcair (un)loading facilities
- Railcar loading facility
- Utilities

Terminal business references

- 2x30.000 Metric ton Estonia (2009)
- 10.000 Metric ton Bulgaria (2013)
- 2x30.000 Metric ton Estonia (2019)
- 12.500 Metric ton Bulgaria (2020) (under construction)

NH₃ production (NFuel[®] system)

Key features

• Casale licensed Technology ► CASALE

Unit Size	Kg/hr	Metric tons/day	Metric tons/annum
NFUEL [®] 1	120	3	1.000
NFUEL [®] 4	415	10	3.650
NFUEL [®] 20	2.500	48-60	20.000

- Standarised designs for Minimum CapEx & optimised OpEx approach
- Scalable
- Minimum site activities thanks to plug & play designed skids
- Allows fluctuations in feedstock
- Based on existing HB technology (Downscaled)
- Hot-standby of Ammonia reactor (for intermittency purpose)

NFuel[®] Power 2 Ammonia

Power2Ammonia (using Electrolyser)

- Use of stranded electricity
- Storage of energy in liquid form
- CO₂ free economy
- Creating a carbon free fuel
- Efficient hydrogen storage in a liquid form
- For grid stabilisation purposes
- Scalable

	CAPACITY	CAPACITY	POWER CONSUMPTION
UNIT	metric ton/year	metric ton/day	Megawatt
NFUEL 1	1000	3	1,5
NFUEL 4	4000	10	5-6
NFUEL20	20000	60	25-30

NFuel[®] Practical experience

#>100 (45)Performed business analysis
for (green) ammonia production

#>25 (10) performed feasibility studies
for (green) ammonia production

#>5 performed Basic Engineering
Packages (BEP+) for (green) ammonia
production

NFuel Practical experience highlights – FEED & BEP NH₃ Plants

- Front-End Engineering & Design (FEED) study for a 1,000 ton renewable ammonia plant in close collaboration with Casale S.A. from Switzerland;
- Basic Engineering design (BEP⁺) for a NH₃ production facility producing **18,000 ton** of anhydrous ammonia per annum.

Render:

18,000 ton per annum ammonia plant

- Make up gas purification unit
- Compression unit
- HB ammonia loop
- Emergency system
- Auxiliary equipment;

NFuel Practical experience highlights – BEP & Feasibility assessments

Proton Ventures:

- Performed a Front-End Engineering & Design (FEED) study for a 20,000 ton Ammonia Plant in the USA using natural gas as feedstock;
- Performed various feasibility study for ammonia plants in ranging from 1,000 to 80,000 ton ammonia per annum, for instance the **20,000 ton Electrolysis based (PEM) Green Ammonia Plant** on Goeree Overflakkee.

Proton Ventures – Ambassador of Green Ammonia

Since 2001 Proton Ventures pioneered in the **(green) ammonia industry** by designing the largest ammonia terminals of Europe and sustainable ammonia plants. Moreover, Proton has been an ambassador for green ammonia by:

- Being initiator/organiser of the European NH₃ event;
- Being partner of the Ammonia Energy Association, Arab NH₃ Fertilizer Association, Energy Storage NL, Voltachem and many more;
- Providing lecturers to governmental institutes;
- Providing Ammonia webinars and trainings.

Proton Ventures & Partners for Green Ammonia

Over the past decade Proton Ventures teamed up with stakeholders within the complete **Power-2-ammonia-2-application** chain, such as:

- Establishing the Transhydrogen Alliance
- Member of the Energy Island Goeree Overflakkee
- Partnerships with prominent Technical companies (I.e Casale, Halder Topsoe, Vicoma, Battolyser, Duiker Combustion, etc.).
- Teaming up with local partners, universities, research institutes and governmental authorities

PROTO

Proton Ventures' Transhydrogen Alliance

Proton Ventures established the **Transhydrogen Alliance**. The alliance wants to work together with specially selected partners in specific countries to create a new export industry and all related benefits. We believe that the alliance includes all the ingredients to kickstart the green Hydrogen/ammonia economy.

Proton Ventures' partners in the Transhydrogen Alliance:

Experts in transport and sales and marketing of ammonia & NFuel in existing markets making use of their existing fleet and customer base.

Experts in Liquid Storage Solutions & Operations worldwide.

Oil & Gas experts in distribution and marketing and sales of green fuels in captive markets making use of their existing infrastructure.

Offering support and assistance to develop a terminal location in the Port of Rotterdam.

The Objectives / Opportunity

- Through recent political and technological developments there is an opportunity to set up new green energy supply chains between sun-and wind rich countries that bring future supply and demand together.
- The **THA** consortium wants to work together with specially selected partners in specific countries to create a new export industry and all related benefits.
- Thanks to unique technical solutions and the combination of industry experts in each part of supply chain **THA** can start this supply chain within 3 years from today, with large scale up potential.
- Let's build the future together.

The Transhydrogen Alliance – A complete value chain

The "Transhydrogen Alliance" offers a fully integrated team in the green hydrogen and green ammonia supply chain with knowledge and experience in technology, logistics and sales.

The Project: A two stage approach

Demonstration phase

Commercialization phase

- Small scale unit(s) allowing for 40,000 to 60,000 metric ton per year of green ammonia production
- Timeline for demonstration facilities deployment is
 2022 2023
- Allows for gradual expansion in case allocated land is available and permits for expansion are arranged.
- Multiple larger units of 20,000 ton per year production capacity or more will be deployed in the years 2023 – 2026 up to an overall total of 1,000,000 metric ton per annum production capacity.
- Allows for lowering overall costs across the supply chain resulting in lower price for the green ammonia.
- Client / of taker is owner of the facilities.
- In this phase the Consortium acts as an EPC contractor

Local partners, how can we cooperate?

The THA consortium will enable:

- Your country to become one of the first movers of green hydrogen production, with a potential for export
- The development of a new export industry with related financial and job benefits
- Build up a local skill set and knowledge industry
- Possible development of related equipment industry

Local Stakeholder support is being investigated for:

- Provision of renewable energy, where? By whom?
- Provision of land for RE, conversion facilities, export terminal
- Connection between RE park and port
- Provision of demineralized water
- Local support to operation the plant
- Local ammonia distribution
- Local support to operations of export terminal
- Investor in local assets
- Local subcontracting support (for assembly & construction)

Technical challenges

How to integrate Renewable Energy to an Green Ammonia Plant?

- Capacity Factor RE
- Required Flexibility
- Optimised hydrogen production
- Ammonia Plant Capacity
- Hydrogen and electricity storage
- Storage
- Distribution
- Etc..

PROTO

Alternative Routes for 2670 ton H2 transport per ship

NFuel (GREEN Ammonia)

- **3** $H_2 + N_2 = 2$ NH₃ or **1,5** molecule H₂ gives 1 molecule NH₃ (no loss of H₂ in the formation reaction)
- Approx. 178 kg H₂ per ton NH₃
- Cracking NH₃ to H₂ takes approx. 25% of initial H₂ quantity (*Why do this and not use directly the NH₃?*)
- 15,000 ton NH₃ requires some 22,500 m³ storage volume on ship

LOHC (Liquid Organic Hydrogen Carrier)

- Thermo-chemical bonding of H₂ to organic hydrocarbons (e.g. MCH)
- Approx. 62 kg H₂ per ton LOHC
- Thermal energy needed to release H₂ from LOHC required, typically 25% energy loss
- Re-use existing infrastructure related to Oil & Petro Chemical Industry
- 45,000 ton LOHC requires some 58,500 m³ storage volume on ship

2670 ton H2

- Liquid at -253 °C, requiring some 3.9 (theoretical minimum) up to 16 kWh/kg H₂ in energy (12 50% of energy value is lost)
- 2,670 ton liquid H₂ requires some **38,000 m³** storage volume on ship
- Compressed H₂ gas at 200 barg would require for the same 2,670 ton of 22,000,000 m³ storage volume on ship

$CH_4 - CH_3OH$ (MeOH)

 LH_2

2670 ton H2

- The formation reaction requires CO₂ and generates consumes H₂ due to H₂O being formed
- 4 H2 + CO2 → 1 CH4 + 2 H2O (loss is 50% in H2) Equals 200% Capex for solar or wind compared to NFuel/LOHC
- **3** H2 + CO2 → 1 CH3OH + 1 H2O (loss is 33% in H2) Equals 150% Capex for solar or wind compared to NFuel/LOHC
- But lower transport costs! But also no CO2 available cheap in solar or wind rich areas

2670 ton H2

Contact Details

Proton Ventures

www.protonventures.com

NH₃ event **NH3**event <u>www.nh3event.com</u>

Hans Vrijenhoef

Founder & Chairman to the Management Board of Proton Ventures

Founder Transhydrogen Alliance

Hans.Vrijenhoef@protonventures.com

Karel Doormanweg 5 3115 JD Schiedam The Netherlands

+31-10 42 67 275 info@protonventures.com

www.protonventures.com